
Information Systems Frontiers 3:2, 169–183, 2001
C© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Understanding the Philosophical Underpinnings of Software
Engineering Research in Information Systems

Dawn G. Gregg∗

School of Management, Arizona State University West,
P.O. Box 37100, Phoenix, AZ 85069-7100 USA
E-mail: Dawn.Gregg@asu.edu

Uday R. Kulkarni and Ajay S. Vinzé
School of Accountancy and Information Management,
College of Business, Arizona State University, P.O. Box 873606,
Tempe, AZ 85287-366, USA
E-mail: Uday.Kulkarni@asu.edu
E-mail: Ajay.Vinze@asu.edu

Abstract. The Information Systems (IS) discipline, and related
research, focuses on the development, understanding, and use
of technology to meet business needs. Technology, in particu-
lar “software,” is the basis for IS research, making software
engineering a critical component of research in the IS do-
main. While the importance of software development is well
accepted, what constitutes high quality software engineering re-
search is not well defined. Perhaps this is because some software
development clearly is not research and it is hard to distinguish
between pure application development, and systems development
that pushes the boundaries of knowledge. Sir Karl Popper argued
that the scientific quality of research is not based on its empirical
method, but on the nature of the questions asked. Our research
suggests that software engineering can meet Popper’s criteria
for scientific research.

Drawing on well-established research philosophies, we pro-
pose a software engineering research methodology (SERM) and
discuss the utility of this methodology for contributing to and
expanding the IS body of knowledge. We also describe the consid-
erations that need to be addressed by SERM to enhance accept-
ability of software engineering research in IS. Our suggestions
are corroborated with a review of current IS software engineering
research reported in leading IS journals.

Key Words. software engineering, research philosophy, infor-
mation systems research methodology

1. Introduction

A major component of the Information Systems (IS)
discipline is the engineering of software to meet the

evolving needs of organizations and individuals. Soft-
ware engineering has long been argued to be at the core
of IS. IS researchers perform software engineering
research to demonstrate the viability of new systems
concepts, but existing research paradigms do not fully
encompass the issues related to expanding the current
capabilities of software systems.

Software engineering as a research methodology
differs from the tools, techniques and methods used
in the construction of software. Software Engineering
Research Methodology (SERM) can be defined as an
approach that allows the synthesis and expression of
new technologies and new concepts in a tangible prod-
uct that can the contribute to basic research and serve as
an impetus to continuing research (Nunamaker, Chen,
and Purdin, 1991). SERM is not research into the soft-
ware development process. It includes proposing, for-
malizing and developing software systems to improve
the effectiveness and efficiency of processes at the indi-
vidual and organizational level. SERM creates bridges
between human processes and technological capabili-
ties, allowing uses of information that were not other-
wise possible.

Although SERM is a significant component of
applied IS research, the development of a software sys-
tem, by itself, is usually not regarded as serious re-
search. There are two likely explanations for this. First,
because the philosophical foundations for software

∗To whom all correspondence should be addressed.

169



170 Gregg, Kulkarni and Vinzé

engineering research in IS are not well defined, there
is disagreement as to whether software engineering
represents a scientific method of inquiry. Second, no
accepted standard and very few rules are available to
govern the way software engineering research is con-
ducted. While other research methodologies have clear
conventions that define how to conduct experiments
or perform case studies, how software engineering
research is performed is left almost entirely up to
the individual researcher. This creates difficulties for
reviewers trying to determine whether a given software
development project constitutes high quality research.

Research in IS has traditionally taken either a
Positivist/Postpositivist or Interpretive/Constructivist
approach (Benbasat, 1989; Cash and Lawrence, 1989;
Kraemer, 1991). However, in today’s IT based en-
vironment, the development and implementation of
innovative software in an organizational or individ-
ual context does not seem to be adequately covered
by these paradigms. While the epistemological and
ontological underpinning of these paradigms serve IS
research well, the explanations, justifications and meth-
ods resulting from these paradigms seem inadequate for
SERM. One of the objectives of this research effort is
to propose a paradigm that more completely describes
research that is performed using SERM approaches.

A second objective of this research is to provide
guidelines for conducting IS software engineering re-
search. IS research related to systems development has
often borrowed from methods specified in systems en-
gineering literature. However, while construction of in-
novative systems can be research, systems development
by itself is not necessarily research unless a strong theo-
retical and methodological grounding provides rigor to
the effort. To this end, we propose a SERM framework
that allows developmental research to be performed us-
ing a rigorous methodology. Using this framework, we
evaluate current practices and approaches in IS soft-
ware engineering research efforts and illustrate some
best practices for SERM.

In the next section, we discuss software engi-
neering as a research philosophy and compare and
contrast it with well-established research paradigms.
We propose Sociotechnologist/Developmentalist as
a new paradigm that incorporates the assumptions
made by the Positivists/Postpositivist and Inter-
pretive/Constructivists and extends them to cover
SERM research. In Section 3 presents a more focused
framework for SERM that takes a three faceted view
to software engineering research and illustrates its

utility by mapping it to some of the seminal IS/SERM
research efforts. In Section 4, using our framework,
we evaluate recently published SERM research in IS
journals and extract some best practices these efforts
employ. Finally, in Section 5 we summarize our efforts
and provide some concluding thoughts related to
SERM research.

2. Software Engineering as Research

In our attempt at defining software engineering as a
research practice, we ask, “Can software engineering
be research?” The IS field is founded on the study
of information systems and their characteristics and
how information systems and programs support human
purposes (March and Smith, 1995). The information
system and supporting software is fundamentally im-
portant in addressing these issues. However, can the
engineering of an information system itself constitute
a research effort?

It is easy to find extreme cases in which software
engineering may not be considered serious research.
Obviously, writing a program to solve a trivial prob-
lem is not research. Applications of existing software
to varied contexts is likewise questionable from a re-
search perspective, even if it supports some ongoing
research effort. In these cases, the technology presented
does not extend current knowledge boundaries. On the
other hand, there are breakthrough software engineer-
ing efforts, like the development of databases, for ex-
ample, that obviously qualify as research. The problem
is there is a vast body of software engineering efforts
that fall between these two extremes. This brings us
back to the initial question: Can software engineering
be considered research? And if so, how?

2.1. The nature of software engineering research
Research in its most general form can be described
as an approach to one of the many different ways of
promoting knowledge enhancement or understanding.
Research is inherently different from other ways of
knowing such as insight, divine inspiration, and author-
ity dictates (Kerlinger, 1986; Mertens, 1998). Fur-
thermore, scientific research is a process of systemic
inquiry conducted under the aegis of a theoretical
framework. The use of theory as a basis for in-
quiry helps distinguish research from other similar
efforts that are labeled as evaluation (Langenbach,
Vaughn, and Aagaard, 1994). The distinction between



The Philosophical Underpinnings of Software Engineering Research in I.S. 171

evaluation and research is important since both can and
do make use of systematic inquiry methods. Mertens
(1998, p. 3) suggests that while “evaluation is associ-
ated with the need for information for decision making
in a specific setting, research is more typically associ-
ated with generating new knowledge that can be trans-
ferred to other settings.” The importance of a theoretical
framework, although well understood and frequently
referred to, is often sidestepped in software develop-
ment research.

To decide whether software engineering can be con-
sidered as research we examine some of the definitions
of research. Kerlinger (1986, p. 10) defined (scientific)
research as a “systematic, controlled, empirical, and
critical investigation of natural phenomena guided by
theory and hypotheses about the presumed relations
among such phenomena.” Mertens (1998, p. 2) defined
research as “a systematic inquiry that is designed to
collect, analyze, interpret, and use data to understand,
describe, predict, or control.” Under these definitions,
it is difficult to classify the construction of a software
system as research.

This, however, is not the only way of viewing re-
search. Sir Karl Popper (1980) argued that the scien-
tific quality of research is not based on its empirical
method. He asserts that the value of scientific research
is determined by the risk involved in the phenomenon
that it is trying to explain. That is, the criterion that
should be used to judge the scientific status of research
is its falsifiability, or refutability, or testability. Under
his definition, research needs to be conducted to answer
questions whose answers are not obvious but that can be
tested by some means. Blake (1978) defined scientific
developmental research as the “use of scientific knowl-
edge directed toward the production of useful material,
devices, systems, or methods, including design and de-
velopment of prototypes and processes.” According to
these definitions, whether or not something is research
depends not only on the method used to test a theory
but also on the nature of the questions asked.

Software engineering can perhaps meet Blake’s
and Popper’s criteria for scientific research. Using the
linguistic theory context, Lyytinen (1985) argues that
a variety of views, ranging from Fregean core (denota-
tional) to Skinnerian response (behavioristic), should
be included when studying IS development to better
understand the views and goals of the development en-
vironment. If a researcher is proposing an entirely new
way of looking at a problem and wonders if a sys-
tem can be developed that will address the problem,

then the engineering of such software would constitute
research. For example, in the late 1980s researchers
were wondering if information systems could be
developed to aid group decision making (DeSanctis
and Gallupe, 1987). These researchers needed to iden-
tify what aspects of group communication and deci-
sion making could be improved by the introduction
of technology and to show how to configure a system
to provide this benefit. Up to that time, it had not been
clear that technology could be developed to address the
group-decision making problem. Necessary behavioral
and system characteristics had not been identified and
rules that could be used to control group interaction had
not been created. The development of the initial proto-
type system to support group activities based on “the-
ories” of IS potentially represented a proof-of-concept
or proof-by-demonstration.

2.2. Software engineering as a research paradigm
In describing any method as a viable research approach,
we need to understand how it stacks up vis-á-vis the ma-
jor paradigms of research. Paradigms are composed of
“assumptions about knowledge and how to acquire it
and about the physical and social world” (Hirschheim
and Klein, 1989; Hirschheim, Klein, and Lyytinen,
1995). Guba and Lincoln (1994) suggest three ques-
tions that need to be addressed in defining a paradigm:
What is the nature of reality that is addressed (ontol-
ogy); What is the nature of knowledge (epistemology);
and What is the best approach to obtaining the desired
knowledge and understanding (methodology). The two
paradigms of interest for information systems re-
searchers, from the field’s conception to current times,
have been the Positivist/Postpositivist and the Inter-
pretive/Constructivist (Falconer and Mackay, 1999;
Probert, 1999; Probert, Rogers, and Moores, 1999).

The Positivist/Postpositivist paradigm follows the
empiricist approach, based on the assumption that
social worlds are analogous to the natural world, and as
such can be studied using similar principles. Reichardt
and Rallis (1994) suggest that under this paradigm,
explanations of a causal nature can be suggested by
grounding these explanations in theory. This paradigm,
including such supporting methodologies as experi-
mental, quasi-experimental, correlational and causal
comparative (Lather, 1991), are arguably the dominant
approach in information systems research today
(Morrison and George, 1995).

The Interpretive/Constructivist paradigm suggests
that “knowledge is socially constructed by people



172 Gregg, Kulkarni and Vinzé

active in the research process, and that research is a
product of the values of the researchers conducting
it” (Mertens, 1998; Schwandt, 1994). This paradigm
emerged from early efforts in phenomenology and in-
terpretive understanding and is presently also referred
to as hermeneutics (Eichelberger, 1989). Tesch (1990)
identified twenty-six types of methods associated with
this paradigm, including enthnographic, hermeneutic,
phenomenological and naturalistic. Also included are
case studies and other qualitative methodologies that
are new to IS research but are lately finding increased
acceptance in the IS literature (Markus and Lee, 1999).

While these paradigms provide a good basis for a
majority of the IS research stream, they do not fully
address the unique requirements of software engineer-
ing. A perspective that is common to many IS research
projects using the Positivist/Postpositivist paradigm is
that (new) technology is a variable that is either present
or absent. While studying the impact of technology on
organizational processes, groups, and individuals, tech-
nology is assumed to be available. The software process
that makes it possible for the technology to be applied
to the phenomenon under study is assumed away. Sys-
tem development is not considered as part of the fuller
understanding of the subject or the building of scientific
knowledge. The Interpretive/Constructivist paradigm,
on the other hand, prescribes long-term, in-depth obser-
vation of the effect of introduction/use of information
systems in an organization. Here too, the development
of information systems is typically not the focus of
such research. Similar to the Positivist/Postpositivist
paradigm, the Interpretive/Constructivist paradigm is

Table 1. Contrasting beliefs associated with major research paradigms

Positivist/ Interpretive/ Socio-technologist/
Basic beliefs postpositivist constructivist developmentalist

Ontology One reality; knowable Multiple socially Known context with multiple socially
• What is the nature with probability constructed realities and technologically

of reality? created realities
Epistemology Objectivity is important; Interactive link between Objective/Interactive; Researcher
• What is the nature researcher manipulates and researcher and participants; creates the context and

of knowledge? observes in dispassionate values are made incorporates values that are
objective manner explicit; created findings deemed important

Methodology Quantitative (primarily); Qualitative (primarily); Developmental (primarily); focus
• What is the approach for interventionist; hemeneutical; dialectical; on technological augmentations

obtaining the desired knowledge decontextualized contextual factors are to social and individual factors
and understanding? described

Source: Adapted from Guba and Lincoln (1994).
Note: The category of Social-technologist/Developmentist is suggested by the authors, and is not part of the original model by Guba and
Lincoln (1994).

more concerned in most IS research with the organiza-
tional settings and the impact of technology on orga-
nizational units. Both these paradigms do not attend to
the creation of unique knowledge associated with the
development of information systems from their con-
ception to inception.

To alleviate limitations of the Positivist/Postposi-
tivist and Interpretive/Constructivist paradigms and
more directly describe the practice of IS software
engineering research, we introduce the Socio-techno-
logist/Developmentalist paradigm, which addresses the
valuable contribution of software systems and as-
sociated processes to scientific knowledge building.
We then compare and contrast its characteristics with
those of the other two paradigms, pointing out that the
three approaches to scientific knowledge building rep-
resented by the three paradigms are intrinsically in-
terdependent. Table 1 presents the contrasting beliefs
associated with the three research paradigms described
above.

Within the Socio-technologist/Developmentalist
paradigm, reality is technologically created. Socially
created multiple realities co-exist and are influenced
by the need, acceptance, and/or comfort level of tech-
nology. Objectivity in the nature of knowledge is
important. Knowledge is coded explicitly and is implic-
itly experienced through the behavior of the system as
interactions take place. The supporting methodology is
primarily developmental, starting from idea generation
(concept) and design to the system’s initial implemen-
tation and/or formal description. The methodology’s
focus is on the technological innovations/extensions



The Philosophical Underpinnings of Software Engineering Research in I.S. 173

which are intended to affect individual and organi-
zational experience in a positive manner. The actual
outcome of the research under this paradigm may sub-
sequently be studied using methodologies associated
with the other paradigms.

In describing the Socio-technologist/Develop-
mentalist paradigm, we find that it is intertwined
with the other two paradigms. Nunamaker, Chen, and
Purdin (1991) call it the “multi-methodological ap-
proach” to IS research. March and Smith (1995, p. 255)
suggested that “design science (what we call Socio-
technologist/Developmentalist) provides substantive
tests of the claims of natural science research.”

The Interpretive/Constructivist paradigm creates
the research context needed to gain familiarity with
a new field, observe subtle relationships, and identify
needs. Research conducted within this paradigm re-
sults in generating new concepts that feed the other
two paradigms. The keyword is “generation.” The gen-
eration of propositions which may later be tested as
hypotheses and the identification of technology needs
that may result in construction of useful systems.

The Positivist/Postpositivist paradigm directs dis-
passionate and objective evaluation of dependencies
and relationships. The keyword is “confirmation”. The
research occurring under this paradigm results in fuller
understanding of the subject matter. Through a pro-
cess of confirmation/falsification of propositions, it
lays the groundwork for the step-by-step building of
the knowledge base of the field. Certain steps may
lead to the need for in-depth, longer-term interac-
tion with the participants/processes, thus feeding into
the Interpretive/Constructivist paradigm. On the other
hand, such interaction may lead to re-specification
of the system whose impact is under review, thus
feeding into the Socio-technologist/Developmentalist
paradigm.

The Socio-technologist/Developmentalist paradigm
allows the creation of new systems and transfer of
technology to domains that need them. The keyword
is “creation.” IS systems can be viewed as social
systems that are technically implemented (Hirschheim,
Klein and Lyytinen, 1995). The knowledge building
takes place through conceptualizing, designing, build-
ing of prototypes (as proof-of-concept, proof-by-dem-
onstration) and/or by formal (mathematical, logical)
proofs and descriptions. The Socio-technologist/
Developmentalist paradigm invariably feeds into the
other two research paradigms because the intended
(and unintended) impact of the systems need to be

scientifically evaluated. The introduction of new tech-
nology into the social process sometimes leads to
completely new sets of questions, some of which may
be answered through experimenting and objective
evaluation and others may only be answered through
in-depth interactions with the participants.

3. The SERM Framework for IS Research

Keen (1980) suggested that it was critical for IS re-
searchers to have a “craftsman’s feel for the technol-
ogy.” In particular, Keen was referring to the crafting
of information systems to exploit the explosive growth
of IS technology in organizations. While software en-
gineering has always been considered important to IS
research, researchers are increasingly arguing that soft-
ware engineering is at the core of the IS discipline.
Some researchers take that a step further and consider
engineering of software to be a key differentiating fac-
tor between IS research and other functional disciplines
of business (Vinze et al., 1992). The purpose of this sec-
tion is to present a framework that describes the facets
of quality software engineering research.

3.1. Software engineering orientation
to IS research
Before presenting our framework, we focus on how
software engineering research efforts fit into the re-
search paradigms presented in Section 2, how the
methodology potentially connects the three paradigms,
and how it participates in the overall process of knowl-
edge building. In the generate portion of the software
engineering research cycle, developers interpret and
construct realities that can be created using a soft-
ware system. In this context, researchers, to a large
extent, follow the Interpretive/Constructivist paradigm
in knowledge creation. Software requirements, needs
and descriptions are constructed and merged with the
attributes of the setting in which the system will be
implemented.

In the create portion of the software engineering
research cycle, concepts are translated into reality us-
ing activities associated with systems development. In
this phase, developers rely more heavily on the Socio-
technologist/Developmentalist approach, as we have
defined it. The creation perspective focuses on build-
ing a prototype or formalizing the system and thereby
improving IS practices, contributing to knowledge by



174 Gregg, Kulkarni and Vinzé

advancing the state of the art through technical inno-
vation.

Finally, the confirmation aspect of software engi-
neering research involves transfer of technology to
domains that need it. It involves scientific evaluation
and measuring the acceptance of the new information
systems. This phase traditionally relies on the Posi-
tivist/Postpositivist approach. The thrust here is to rule
out alternative explanations for the changes observed
once a software system is implemented. As such, there
are aspects of generate, create and confirm in all soft-
ware engineering efforts. SERM bridges the other two
research paradigms by creating new realities for indi-
viduals and organizations through the development and
introduction of software solutions.

3.2. The SERM framework
Following the Socio-technologist/Developmentalist
paradigm, the SERM framework (see Fig. 1) defines
three facets of the software engineering research
methodology: the conceptual, the formal and the de-
velopmental. While development is sometimes equated
with software engineering, in the SERM framework,
conceptualization or the theoretical grounding of the
system requirements is suggested as the focal point of
the research effort. The conceptual basis is followed
by, either mathematical or logic based formalisms
and/or development of a system or system prototype.
Both the formal and the developmental approaches are
important parts of the methodology and are viewed as
different approaches to establishing the proof of the
concept.

Fig. 1. The SERM framework.

Conceptualization phase. Conceptualization is the
fundamental activity in SERM. In this phase the theo-
retical grounding for the needs and requirements of the
research effort are defined. Concepts help researchers
think about and communicate ideas via definitions and
propositions that are advanced as explanations and pre-
dictions for various phenomena and theories. The suc-
cess of this phase of software engineering depends on
(Emory and Cooper, 1991):

1. The clarity with which the researcher details the
problem and grounds it with the theoretical con-
structs, and

2. The understandability and translatability of these
concepts.

In describing the conceptual aspect of software engi-
neering research, Nunamaker, Chen, and Purdin (1991)
suggest that the “advancement of IS research and prac-
tice often comes from new systems concepts” and con-
ceptualization provides the “raw material out of which
many large, pragmatic investigations are formed.” As
an example, they suggest that the use of information
systems to support electronic meetings, executive in-
formation systems, concurrent engineering as having
their origins in IS researchers’ and practitioners’ imag-
inations. Under the SERM framework, we suggest that
once an idea is conceived and validated the software
engineering effort can take on either a formal approach
or a developmental approach (or both). Although the
sequence of formal and developmental phases is not
pre-specified, attempting either of them without the
conceptual phase would be inadequate from a research
viewpoint.

Formalization phase. Formalization is defined as a
mathematical or logic based technique to systemati-
cally describe, develop and verify a software system
(Bowen and Hinchey, 1995). It is generally agreed that
formalisms are an important aspect of software engi-
neering. However, more often than not, they are ig-
nored in the IS literature. The formalization phase of
the SERM framework addresses the needs specified
in the conceptualization phase, using a mathematical
or logic-based explanation. This phase also builds and
gives shape to ideas and helps to generalize them. The
IEEE has given the following examples of formal meth-
ods:

1. A specification written and approved in accordance
with established standards,



The Philosophical Underpinnings of Software Engineering Research in I.S. 175

2. A specification written in a standard notation, for
use in proof of correctness.

The use of rules of mathematics and logic is central
to the formalizing process as it reduces the possibility
of misconceptions and misunderstanding about the sys-
tem. Formalisms in IS research can also include formal
language-based descriptions of the syntax and seman-
tics of the information system envisioned, e.g. Chen’s
(1976) entity relationship approach to data modeling
and Geoffrion’s (1987) structured modeling language.
It can also include the application of formal techniques
such as optimization algorithms and known heuris-
tics to business problems. Other typical activities in
this phase include mathematical modeling and eval-
uation, math/logic proofs, analytical modeling, and
computational analysis.

Development phase. When IS research concepts pro-
pose a new way of doing things, researchers may elect
to develop a system to demonstrate the validity of the
solution. The principal approach in this phase is pro-
totyping. By developing a prototype, researchers can
study system performance in a controlled environment.
Prototyping is an iterative process wherein subsequent
developments are based on initial successes. The build-
ing of the system is used to demonstrate its feasibility
(March and Smith, 1995).

IS researchers often conduct their research by de-
veloping a prototype system to demonstrate the feasi-
bility of the design and testing the functionalities of the
proposed systems. The process of developing a work-
ing system can provide researchers with insights into
the advantages and disadvantages of the concepts and
the chosen design alternatives (Nunamaker, Chen, and
Purdin, 1991). Thus, the accumulation of experiences
and knowledge acquired during the systems develop-
ment process represents a viable research goal in and of
itself.

3.3. Illustrating the SERM framework
The SERM framework suggests that software engi-
neering can be considered a conglomeration of three
perspectives—conceptual, formal, and developmental.
While these phases can be viewed as separate and dis-
tinct, we find that for software engineering to qualify
as rigorous research, it must address issues in at least
two of the three phases.

Numerous IS software engineering research efforts
illustrate the combination of traits from two or more of

these phases. Some of the work illustrating a linking
of the conceptual and the formal phases includes sys-
tem development methodologies, as in Data Flow dia-
grams (DeMacro, 1978), ISAC (Lundeberg, Goldkuhl,
and Nilsson, 1981) and the ISDOS project (Teichroew
and Hershey, 1977). Subsequently, the formal defini-
tional work in ISDOS was extended with a develop-
mental or engineering orientation; software devel-
opers translated the first-generation methodologies
mentioned above into actual operational systems. As
an example, the methodology presented in the IS-
DOS project was extended to PSL/PSA (Tiechrow and
Hershey, 1975) and the Plexsys systems (Nunamaker
and Konsynski, 1975; Nunamaker et al., 1976).

A combination of conceptual and developmental as-
pects of software engineering work is demonstrated in
more recent developmental efforts related to group sup-
port systems. The GSS development effort draws upon
conceptual work on Delphi techniques and stakeholder
analysis (Mason and Mitroff, 1973). Instead of follow-
ing the route of formal definitions, it plunges directly
into creating the environments to support group de-
cision activities and scientifically testing their impact
(Dennis et al., 1988; DeSanctis and Gallupe, 1987).

Other research projects transition from conceptual
formalisms to developmental efforts and can be illus-
trated with examples from the pioneering research re-
lated to databases and data modeling. The development
of the relational databases, for example, has as its ba-
sis the formalization efforts in relational algebra and
normalization theory.

Clearly, several of the foundational efforts in IS can
be described as having employed the SERM. However,
is current IS research conducted in a manner consistent
with the SERM framework and what guidance can the
SERM framework offer to IS researchers?

4. Reviewing Current Software
Engineering Research Efforts in IS

To examine its utility and to illustrate the various ap-
proaches undertaken by IS researchers, current soft-
ware engineering research efforts in the IS domain were
mapped to our SERM framework.

4.1. Data collection and mapping
We focused on software engineering research reported
in seven leading IS journals: Decision Sciences, Deci-
sion Support Systems, Information and Management,



176 Gregg, Kulkarni and Vinzé

Table 2. Research methodologies

Software engineering
Qualitative
Experimental
Survey
Simulation/modeling
Concept/discussion
Secondary data

Information Systems Research, Journal of Manage-
ment Information Systems, Management Science, and
MIS Quarterly. The time frame for the articles included
in this study was from 1996 to 1998. Initially, arti-
cle abstracts were selected based on a search of the
ABI/Inform article indexes. The index was searched
using keywords such as “software,” “program,” and
“application.” The search resulted in identification of
509 articles.

As a first step, the 509 articles were reviewed and
categorized according to principle research method-
ologies according to the seven research methodologies
(shown in Table 2) and scanned to see if they considered
relevant IS related issues (i.e., the individual or orga-
nizational focus of the information system). Articles
focusing on purely technical issues (such as data struc-
tures, algorithms, hardware considerations, or operat-
ing systems) were not evaluated further. The majority of
the articles reviewed addressed IS issues out of which
110 were identified as reporting software engineering
IS research.

For the 110 software engineering oriented articles,
the authors did a preliminary rating of the research
to map each one into the SERM framework. This rat-
ing involved assessing to what extent the research was
conceptual, formal, and/or developmental. Every paper

Table 3. Rating categories for software engineering research

Research Dimensions

Rating Conceptual Formal Developmental

High Major extensions or generalization Defined in math and logic Prototype or model with
of an existing concept terms; formal definition or validation and verification
or a totally new concept proofs; mathematical description.

Medium Incremental extension and/or Definitional without the Prototype or model with
generalization of math and/or logic limited functionality
an existing concept proofs; establishes

correctness criteria.
Low Existing concept with Descriptive details and Discussion of program requirements

limited extensions conjectures
None No new concept No formal definitions No implementation described

was rated high, medium, low, or none on each of the
three SERM dimensions. The meaning of these ratings
are shown in Table 3.

A rating of high in a given dimension indicates that
the research meets and/or exceeds the definitions for
that research dimension (per Table 3). Only 15 of the
110 articles received a high rating on any dimension.
A medium rating indicates an acceptable performance
on that dimension, whereas a low rating indicates a
minimal consideration given to that dimension.

4.2. Categorizing software engineering
research efforts
Fig. 2 shows a plot of the three overlapping dimen-
sions of the SERM framework. In this plot, articles
rated medium to high for a given dimension fall within
the inner (dashed) circle for that dimension; indicating
that this research contributed significantly in this di-
mension. Articles rated low for a given dimension are
plotted in the narrow region at the edge of the dimen-
sion; indicating that this research made a minor contri-
bution in that dimension. Finally, articles rated none for
a given dimension are plotted outside the outer circle
for that dimension. The plot is labeled with letters that
are assigned to the software engineering research type
associated with each region.

Type A articles represent a high caliber of research in
software engineering. They fall within the inner circle
of the conceptual dimension and also within the inner
circle of at least one of the other two dimensions (for-
mal and/or developmental). The concepts presented in
such research increase our knowledge in the given area
and significant confirmation is provided by means of
either formal methods or developmental prototyping.
Type B research represents a substantial extension of



The Philosophical Underpinnings of Software Engineering Research in I.S. 177

Fig. 2. Types of SERM research.

current knowledge with some formal and/or develop-
mental effort, while Type C research includes a signifi-
cant formal and/or developmental effort to demonstrate
the viability of a more limited extension of an existing
research concept. Type D research represents a lim-
ited extension to our current knowledge and is backed
up by only limited formal or developmental research
effort. Type E and F research was conducted with con-
sideration of only a single dimension of the SERM
framework.

The table below shows a cross-tabulation of the
conceptual, formal and developmental rankings for
the 110 article abstracts deemed IS SERM research.

Table 4. Formal * developmental * conceptual cross-tabulation

Developmental

Conceptual None Low Medium High

None Formal None – – 4 (F) –
Low Formal None 7(E)a 6(D) 3(C) 3(C)

Low 2(D) 7(D) 15(C) 1(C)
Medium 6(C) 1(C) – –
High 1(C) – 1(C) –

Medium Formal None 3(E) 2(B 7(A) 2(A)
Low 5(B) 6(B) 8(A) 1(A)
Medium 8(A) 3(A) 2(A) –
High 5(A) 1(A) – –

aThe letters indicate the type of research per Fig. 2.

Each article count is also labeled A-F, corresponding
to the area of Fig. 2 into which the research would
fall.

In evaluating the 110 software engineering research
papers, 37 were judged to be type A research, the high-
est quality research according to the SERM frame-
work. These papers presented research that extended
the conceptual foundations of the IS field and included
a significant formal or development effort. Seventeen
of the type A papers were deemed largely formal
and represented efforts that extended IS concepts by
defining formal rules for specific IS systems, eighteen
were deemed largely developmental, i.e. they used a
prototyping and testing methodology to demonstrate
the appropriateness of the concepts proposed. Finally,
two type A papers were both formal and developmen-
tal. These papers substantially extended IS concepts,
described these concepts using formal methods and
demonstrated an IS development effort.

Thirteen papers presented a substantial extension
to IS concepts and demonstrated these concepts with
limited formal and/or development efforts (type B
research). These papers are primarily idea papers and
probably represent an initial effort in a stream of re-
search that is to be conducted in a new area. Thirty
papers presented limited extensions to IS concepts but
demonstrated these concepts with a significant for-
mal and/or development effort (type C research). The



178 Gregg, Kulkarni and Vinzé

research discussed in these papers could represent a
onetime effort as opposed to a stream of research.

Twenty-nine papers were judged to be of research
type D, E or F. The fifteen type D papers contributed
little in the way of new concepts and presented lit-
tle formal or developmental work. The ten type E pa-
pers presented concepts only. In these papers no for-
mal of developmental work was eluded to. The four
type F papers presented systems development efforts
without presenting their conceptual foundations. These
research efforts (type—D, E, and F) could benefit by
a grounding the concepts presented more extensively
to theory. In addition, the researchers might consider a
more extensive formal or developmental extension to
demonstrate the viability of their ideas.

4.4. Examples of software engineering
researchers in IS
In this section, we present examples of projects that
illustrate some of the best practices that are used when
conducting SERM research.

Conceptual. Concepts represent the ideas that are
critical to the advancement of IS research and prac-
tice. Concepts must have strong ties to theory and prior
research streams. 53 of the 110 papers reviewed had a
strong conceptual foundation.

For example, Sharda and Steiger (1996) proposed
using “inductive model analysis” as a means of en-
hancing a decision-maker’s capabilities to develop in-
sights into the business environment. They explored the

Table 5. Examples of SERM research concepts

Concept type Author (year) Contribution

New classes of information systemsa DeSanctis and Gallupe (1987) Developed early group support systems
Dennis et al. (1988)
Berners-Lee et al. (1994) Conceived and developed the world wide web and related
Bowman et al. (1995) systems
Borenstein (1996) Contributed to early electronic commerce practice.
Brynjolfsson (1997)

Significant improvement to existing van Harmelen (1997) Proposed a concept that represented a significant improvement
systems or classes of systems to existing methods for formulating anomalies for knowledge-

based systems.
Batra (1997) Introduced a mathematically rigorous approach that uses

decomposition and synthesis so that relational-concepts can
be directly implemented in database management systems.

Transitioning concepts to a new domain Lenard, Madey, and Extended the concept of “hybrid systems” into the auditing
Alam (1998) domain, combining a statistical model with expert systems.

aNote: None of the articles for the “new classes of information systems” category were from the 110 software engineering articles reviewed for
this study.

literature of three distinct disciplines. A strong tie to
theory was a critical determinant of this article’s overall
quality.

In addition to being tied to prior research, an IS
concept must also be both innovative and important.
Researchable concepts include concepts for:

� Entirely new classes of information systems;
� Significant improvements to existing information

systems or classes of information systems;
� Transitioning existing IS concepts into new domains

that are significantly different from the original do-
mains.

Examples of articles with a good conceptual foundation
are presented in Table 5.

These examples demonstrate that there are many
ways to provide a conceptual foundation for IS soft-
ware engineering research and many reference disci-
plines upon which this foundation can be based. At
a minimum, researchable concepts must have some
theoretical or practical basis and should potentially
improve IT practice.

Formal. Once a suitable concept is proposed, it is
necessary to demonstrate its viability by some means.
Researchers can do this using a formal method to sys-
tematically specify, develop and/or verify the system
concept. Our review of current software engineering
research literature indicates that 28 of the 110 soft-
ware engineering research papers used formal methods
in demonstrating their systems’ concepts. The formal



The Philosophical Underpinnings of Software Engineering Research in I.S. 179

Table 6. Examples of formal SERM research

Formal method Author (year) Contribution

Used established standards van Harmelen (1997) Used established standards for conceptual modeling to reinterpret
anomalies found in knowledge-based systems and formalized
non-rule-based knowledge representation inference structures.

Gupta and Developed a distributed connectionist-symbolic architecture using
Montazemi (1997) formal system architecture methods.

Used rigorous mathematics and logic Batra (1997) Used decomposition and synthesis to allow relational concepts to be
techniques including validation used directly in a database management system, that is,

without using an intermediate representation like an ER diagram.
Ong and Lee (1996) Used abductive logic programming for building a decision support

system for the administration of bureaucratic policies.
Orman (1996) Developed a new normal form for first order logic to allow all first order

constraints to be expressed as counter examples in a database system.
Xu (1997) Proposed a method for decision analysis using belief functions in the

valuation-based systems that included a decision calculus for
belief functions and a formal proof of the benefits.

methods used for any given research can vary, e.g. they
can:

� Use established standards for formalizing systems;
� Use mathematical and logical techniques including

validation.

Examples of articles using rigorous formal methods are
presented in Table 6.

Formal methods are appropriate for a certain class
of IS problems. They can be used to extend system
capabilities, to improve methods of constructing and
evaluating system behavior, or to generalize a concept.
When formal methods are suited to the concept being
proposed, they represent an appropriate means of con-
ducting software engineering research.

Developmental. Software engineering concepts can
also be demonstrated by developing a model or a pro-
totype of a system. Modeling and prototyping are used
in two different ways to demonstrate the value of a sys-
tem. When the system concept represents a substan-
tial change to existing systems, a model or prototype
is necessary as a proof-of-concept to demonstrate the
feasibility of constructing a new or enhanced system.
If the concept hypothesizes that a set of benefits will
be provided when an existing technology is used in
a new domain, the prototype or model is constructed
to demonstrate that the benefits do occur (proof-by-
demonstration) (Nunamaker, Chen, and Purdin, 1991).
Forty-three of the 110 software engineering research
papers performed a significant development effort to
demonstrate their systems concepts. Table 7 presents

examples of articles to demonstrate the proposed
concept.

In the examples in Table 7, generally the develop-
ment was complete but validation and verification were
limited. Further testing of the system in an experimental
situation to determine whether the system meets expec-
tations would extend and strengthen such research.

SERM also can include a more extensive valida-
tion effort. In the case of Lenard, Madey, and Alam
(1998) the value of the research was primarily in the
demonstration that hybrid systems represent an im-
proved method for auditors making the going-concern
decision. This was accomplished by developing a sys-
tem prototype and then testing it. They used a three-part
experimental methodology that tested auditors’ beliefs
about expert systems, decision quality with an expert
system alone, and decision quality with a hybrid infor-
mation system.

The development of system prototypes or models is
extensively used in software engineering research. If
the system concepts are theoretically sound. This rep-
resents a valid research methodology. The amount of
validation required for these prototypes and models de-
pends on the complexity of the system being developed
and on the nature of the research question.

Formal and developmental. Occasionally, SERM ar-
ticles include both formal and developmental efforts.
In these cases the authors usually began with a formal
definition of system characteristics and then demon-
strated the validity of the formalization by developing
a system prototype.



180 Gregg, Kulkarni and Vinzé

Table 7. Examples of developmental SERM research

Development type Authors (year) Contribution

Proof-of-Concept Chen and Sheldon (1997) Proposed a system architecture that integrates viable design options.
It did not include any prototype development, however, the
development of the system architecture represented a
significant research effort.

Dean et al. (1997/1998) Developed prototype electronic-meeting-system modeling tools
designed to allow users to work in parallel to contribute directly
during meetings.

Sharda and Steiger (1996) Proposed a system architecture and built a prototype that integrated
several technologies that might help the modeler gain insights
from the analysis of multiple model instances.

Athanasaopoulos (1998) Built and demonstrated a model that combined data envelopment analysis
and goal programming formulations integrated within an interactive
planning framework for resource allocation of public services.

Proof-by- Baligh, Burton, and Developed and demonstrated the Organization Consultant utilizing
Demonstration Obel (1996) useable theory for organizational design.

Ottoway and Burns (1997) Presented a conceptual prototype for agent-based structural self-design
and described experiments conducted regarding such studies.

Belz and Mertens (1996) Developed and tested SIMULEX, a prototype decision-support system
for short-term rescheduling in manufacturing.

Ba, Lang, and Whinston (1997) utilized a formal and
developmental method in their paper on enterprise deci-
sion support using Intranet technology. They presented
a knowledge-base enterprise-modeling framework that
automatically builds and executes task-specific models
in response to user queries. This system represented
a new concept based on major modeling approaches
in both the DSS and artificial intelligence fields. It in-
cluded a detailed discussion of knowledge representa-
tion issues and the model composition process as well
as a partial implementation of an Intranet-based pro-
totype. Another example is an article by Piramuthu,
Raghavan, and Shaw (1998). These authors propose a
modified learning algorithm for multi-perceptron neu-
ral networks to improve the network’s classification
and prediction accuracy. The efficacy of the proposed
method is shown for financial classification.

The use of both formal and developmental meth-
ods tends to increase the rigor of software engineer-
ing research. When research contains both formal and
developmental efforts the demonstration of the un-
derlying concepts is usually better than using either
method in isolation.

Implications. SERM research should be multi di-
mensional involving conceptual innovation coupled
with formal and/or developmental efforts. Our review
of the literature indicates that the significance and orig-
inality of the concept was a critical determinant of the

value of the research effort as a whole. The concept pro-
vides the tie into theory and the basis for development
or formalization.

All the concepts advanced in the “best practice” ex-
ample articles, highlighted earlier, had ties to theory
or to prior research. They extended or generalized an
existing concept. These concepts were then “proven”
using many different formal or developmental meth-
ods, including using established conceptual modeling
techniques, formal system architecture methods, de-
composition and synthesis, abductive logic, prototype
development, model development and system testing.
Articles that were judged to have a relatively poor
conceptual foundation tended to be presentations of
practitioner oriented development efforts as opposed
to research conducted using a software engineering
methodology.

Researchers engaged in developing and improving
IT systems should ensure that: the concepts being ad-
vanced have strong ties to theory, the ideas embodied
in the system extend current practice and that the con-
tribution of the research is significant for more than
solving problems encountered in a single setting.

5. Conclusions

In this paper, we investigated research philosophies
as a foundation for conducting software engineering



The Philosophical Underpinnings of Software Engineering Research in I.S. 181

research in the IS discipline. The impetus for our effort
resulted from the inability to fit software engineer-
ing research comfortably into the established research
paradigms from the social sciences, namely the Posi-
tivist/Postpositivist and the Interpretive/Constructivist
paradigms. The assumptions made by these paradigms
fail to adequately address the developmental orienta-
tion of software engineering research. To address this
concern, we described a new paradigm, the Socio-
technologist/Developmentalist paradigm, that comple-
ments the other two approaches. Using this paradigm,
we proposed the SERM framework to address more
specifically the issue of standards for conducting
software engineering research in IS. In explaining
SERM, we cited influential early efforts in IS devel-
opment as examples. Using the SERM framework,
we illustrated the best practices for current software
engineering research efforts as reported in some lead-
ing IS journals. Our investigation suggests that IS re-
search, for the most part, measures favorably with re-
spect to the SERM framework. However, there are still
research projects that tend to equate software devel-
opment to software engineering research or consist of
conceptual discussions without any proof-of-concept.
SERM can be used to bring rigor to IS developmental
research, and can also be used for critically reviewing
current research in IS. Thus it provides a useful metric
for software engineering researchers in IS.

References

Athanassopoulos AD. Decision support for target based resource
allocation of public services in multiunit and multilevel systems.
Management Science 1998;44(2):173–187.

Ba S, Lang KR, Whinston AB. Enterprise decision support using In-
tranet technology. Decision Support Systems 1997;20(2):99–134.

Baligh HH, Burton RM, Obel B. Organizational consultant: Creating
a useable theory for organizational design. Management Science
1996;42(12):1648–1662.

Batra D. A method for easing normalization of user views. Journal
of Management Information Systems: JMIS 1997;14(1):215–233.

Belz R, Mertens P. Combining knowledge based systems and simu-
lation to solve rescheduling problems. Decision Support Systems
1996;17(2):141–157.

Benbasat I (Ed.). Information Systems Research Challenge (ISRC)—
Volume 1: Qualitative Research Methods. Boston: Harvard Busi-
ness School, 1989.

Berners-Lee T, Cailliau R, Luotonen A, Neilsen HF, Secret A. The
World Wide Web. Communications of the ACM 1994;37(8):76–82.

Blake SP. Managing for Responsive Research and Development. San
Fransisco: W.H. Freeman & Co., 1978.

Borenstein NS. Perils and pitfalls of practical cybercommerce. Com-
munications of the ACM 1996;39(6):36–44.

Bowen JP, Hinchey MG. Seven more myths of formal methods. IEEE
Software 1995;12(4):34–40.

Bowman CM, Danzig PB, Hardy DR, Manber U, Schwartz MF.
The Harvest information discovery and access system. Computer
Networks and ISDN Systems 1995;28(12):119–125.

Brynjolfsson E. A call for exploration: Introduction to special is-
sue on frontier research on information systems and economics.
Management Science 1997;43(12):1605–1607.

Cash J, Lawrence P. (Eds.). Information Systems Research Challenge
(ISRC)—Volume 2: Experimental Methods. Boston: Harvard Busi-
ness School, 1989.

Chen PPS. The entity relationship model—Toward a unified view of
data. ACM Transactions on Database Systems 1976; 1(1):9–36.

Chen HM, Sheldon PJ. Destination information systems: Design is-
sues and directions. Journal of Management Information Systems:
JMIS 1997;14(2):151–176.

Dean, DL, Lee JD, Pendergast MO, Hinkey AM, Nunamaker JF.
Enabling the effective involvement of multiple users: Methods
and tools for collaborative software engineering. Journal of Man-
agement Information Systems: JMIS 1997/1998;14(3): 179–222.

DeMarco T. Structured Analysis and Systems Specification,
New York: Yourdon Press, 1978.

Dennis AR, George JF, Jessup LM, Nunamaker JF, Vogel DR.
Information technology to support electronic meetings. MIS
Quarterly 1988;12(4):591–624.

DeSanctis G, Gallupe RB. A foundation for the study of group deci-
sion support systems. Management Science 1987;33(5):589–609.

Eichelberger RT. Disciplined Inquiry: Understanding and Doing
Educational Research. New York: Longman, 1989.

Emory CW, Cooper DR. Business Research Methods, 4th ed.
Homewood IL: Irwin, 1991.

Falconer DJ, Mackay DR. Ontological problems of pluralist research
methodologies. In Proc. 5th AIS Americas Conference on Infor-
mation Systems, Milwaukee, WI, August 13–15, 1999: 624–626.

Geoffrion AM. An introduction to structured modeling. Management
Science 1987;33(5):547–588.

Guba EG, Lincoln YS. Competing paradigms in qualitative research.
In: Denzin NK and Lincoln Y.S. eds. The Handbook of Qualitative
Research. Thousand Oaks, CA: Sage Publications, 1994:105–117.

Gupta KM, Montazemi AR. A connectionist approach for similarity
assessment in case based reasoning systems. Decision Support
Systems 1997;19(4):237–253.

Hirschheim R, Klein HK. Four paradigms of information systems de-
velopment. Communications of the ACM 1989;32(10):1199–1216.

Hirschheim R, Klein HK, Lyytinen K. Information Systems De-
velopment and Data Modeling: Conceptual and Philosophical
Foundations. New York, NY: Cambridge University Press, 1995.

Keen PGW. MIS research: Reference disciplines and cumulative
tradition. In Proceedings of the 1st International Conference on
Information Systems, Philadelphia, Pennsylvania, 1980;9–18.

Kerlinger FN. Foundations of Behavioral Research, 3rd ed.
New York: Holt, Rinehart & Winston, 1986.

Kraemer KL. Information Systems Research Challenge (ISRC)—
Volume 3: Survey Research Methods. Boston: Harvard Business
School, 1991.

Langenbach M, Vaughn C, Aagaard L. An Introduction to Educa-
tional Research. Needham Heights, MA: Allyn & Bacon, 1994.



182 Gregg, Kulkarni and Vinzé

Lather P. Critical Frames in Educational Research: Feminist and Post-
structural Perspectives. Theory into Practice 1991;31(2):87–99.

Lenard MJ, Madey GR, Alam P. The design and validation of
a hybrid information system for the auditor’s going-concern
decision. Journal of Management Information Systems: JMIS
1998;14(4):219–237.

Lundeberg M, Goldkuhl G, Nilsson A. Information Systems
Development—A Systematic Approach. Englewood Cliffs, NJ:
Prentice Hall, 1981.

Lyytinen KJ. Implications of theories of language for information
systems. MIS Quarterly 1985;9(1):61–74.

March ST, Smith GF. Design and natural science research on infor-
mation technology. Decision Support Systems 1995;15(4):251–
266.

Markus ML, Lee AS. (Eds.). Special issue on intensive research
in information systems: Using qualitative, interpretive, and
case methods to study information technology. MIS Quarterly
1999;23(1).

Mason RO, Mitroff II. A program for research on management
information systems. Management Science 1973;19(5):475–485.

Mertens DM. Research Methods in Education and Psychology: Inte-
grating Diversity with Quantitative and Qualitative Approaches.
Thousand Oaks, CA: Sage Publications, 1998.

Morrison J, George JF. Exploring the software engineering
component of MIS research. Communications of the ACM
1995;38(7):80–91.

Nunamaker JF, Chen M, Purdin TDM. Systems development in in-
formation systems research. Journal of Management Information
Systems 1991;7(3):89–106.

Nunamaker JF, Konsynski BR. From problem statement to auto-
matic code generation. In: Lundeberg M. ed. Systemeering 75,
Studentlilteratur, Lund, Sweden, 1975.

Nunamaker JF, Konsynski BR, Ho TI, Singer C. Computer-aided
analysis and design in information systems. Communications of
the ACM 1976;19(12):674–687.

Ong KL, Lee RM. A decision support system for bureaucratic policy
administration: An abductive logic programming approach.
Decision Support Systems 1996;16(1):21–38.

Orman LV. Constraint by example. Decision Support Systems
1996;17(1):3–12.

Ottaway TA, Burns JR. Adaptive agile approaches to organizational
architecture utilizing agent technology. Decision Sciences
1997;28(3):483–511.

Piramuthu S, Raghavan H, Shaw MJ. Using feature construction
to improve the performance of neural networks. Management
Science 1998;44(3):416–430.

Popper K. Science: Conjectures and refutations, In Klemke ED,
Hollinger R, and Kline AD. ed. Introductory Readings in the
Philosophy of Science. New York: Prometheus Books, 1980:29–
34.

Probert SK. Towards a critical framework for IS research. In:
Proc. 5th AIS Americas Conference on Information Systems,
Milwaukee, WI., August 13–15, 1999:172–174.

Probert SK, Rogers A, Moores J. Understanding hard and soft IS de-
velopment methods: Paradigmatic rigidities or different ends of a
spectrum? In: Proc. 5th AIS Americas Conference on Information
Systems, Milwaukee, WI., August 13–15, 1999: 660–662.

Reichardt CS, Rallis SF. The qualitative/quantitative debate. In:
Reichardt CS and Rallis SF. ed. New Directions for Program

Evaluation. San Francisco, CA: Jossey-Bass, 1994:85–91.
Schwandt TA. Constructivist, interpretivist approaches to human

inquiry. In: Denzin NK and Lincoln YS. ed. Handbook of
Qualitative Research, Thousand Oaks, CA: Sage, 1994:118–137.

Sharda R, Steiger DM. Inductive model analysis systems: Enhancing
model analysis in decision support systems. Information Systems
Research: ISR: A Journal of the Institute of Management Sciences
1996;7(3):328–341.

Teichroew D, Hershey E. PSL/PSA: A computer aided technique
for structured documentation and analysis of information pro-
cessing systems. IEEE Transactions on Software Engineering
1977;3(1):41–48.

Tesch R. Qualitative Research Analysis Types and Software Tools.
New York: Falmer, 1990.

van Harmelen F. Applying rule base anomalies to KADS inference
structures. Decision Support Systems 1997;21(4):271–280.

Vinze AS, Heltne MM, Chen M, Nunamaker JF, Konsynski BR.
Design for Change: Knowledge-Based System Support for
Information Centers. IEEE-Transaction on Systems, Man, and
Cybernetics 1992;22(3):498–512.

Xu H. Valuation based systems for decision analysis using belief
functions. Decision Support Systems 1997;20(2):165–184.

Dawn G. Gregg is a visiting Assistant Professor at
Arizona State University West. She received her Ph.D.
in Computer Information Systems from Arizona State
University, her M.B.A. from Arizona State University
West, and her B.S. in Mechanical Engineering from
the University of California at Irvine. Prior to her doc-
toral studies, she was employed for nine years as a re-
search and development engineer. Her current research
focuses on how to organize and maintain Web-based
content so that it can be used to better meet business
needs. Her work has been published in Communica-
tions of the ACM and Decision Support Systems.

Uday Kulkarni is an Associate Professor of Infor-
mation Systems in College of Business at Arizona
State University. He received his B.Tech. in Electrical
Engineering from the Indian Institute of Technology,
Bombay, his M.B.A. from the Indian Institute of Man-
agement, Calcutta, and his Ph.D. in Management In-
formations Systems from the University of Wisconsin,
Milwaukee. Prior to his doctoral studies, he was
worked for five years in corporate planning and con-
trol areas. His research includes the use of relational
views for decision-support and application of artificial
intelligence techniques to manufacturing problems.
He has published articles in IEEE Transactions on
Knowledge and Data Engineering, Decision Sciences
Journal, Journal of Management Information Systems,
Decision Support Systems, and European Journal of



The Philosophical Underpinnings of Software Engineering Research in I.S. 183

Operations Research. Professor Kulkarni is a Fellow
of the Wakonse Society through his dedication to the
teaching profession. He has been recognized for teach-
ing excellence by student groups, his department, and
the College of Business at ASU.

Ajay Vinzé is a Professor of Information Systems in
the School of Accountancy and Information Manage-
ment at Arizona State University in Tempe. Prior to
joining ASU, he served on the MIS faculty at Texas
A&M University. He received his Ph.D. in MIS from
the University of Arizona, Tucson in 1988. His research

interests include business applications of artificial
intelligence technology and the study of computer
supported collaborative work. His publications have
appeared in leading MIS journals like Information
Systems Research, MIS Quarterly, Decision Sciences,
IEEE Transactions on Systems, Man, and Cybernetics,
Decision Support Systems, Journal of Management In-
formation Systems and Omega. Before joining the aca-
demic environment, he was an IT consultant based in
the Philippines. He is a member of INFORMS, Asso-
ciation of Information Systems and IEEE Computer
society.


